Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 **Operations Research**

Time: 3 hrs.

Iax. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART – A

- Define Operations Research. Briefly explain the phases of Operations Research. 1 (08 Marks)
 - Solve the following LPP by graphical method:

 $Minimize Z = 20x_1 + 10x_2$

Subject to $x_1 + 2x_2 \le 40$

 $3x_1 + x_2 \ge 30$

 $4x_1 + 3x_2 \ge 60$ and $x_1 \ge 0, x_2 \ge 0$

$$x_1 \ge 0, x_2 \ge 0$$

(06 Marks)

The following table gives data for a Linear Programming Problem where the objective is to maximize the profit from allocating 3 resources to 2 non negative activities. Formulate the LPP model for this problem. (06 Marks)

Resource	Resource Reg	Avoilability	
	Activity 1	Activity 2	Availability
1	2		10
2	3	3	20
	2	4	20
Profit/unit	20	30	

Explain the special cases that arise in the use of simplex method.

(10 Marks)

Solve the following LPP using simplex method in tabular form.

Maximize Z = x + 1.5y

Subject to $x + 2y \le 160^{\circ}$

 $3x + 2y \le 240$ and

$$x \ge 0, y \ge 0$$

(10 Marks)

Explain two phase technique to solve LPP in simplex method.

(06 Marks)

Use Big-M method to solve the following LPP

Maximize $Z = 2x_1 + x_2$

Subject to $3x_1 + x_2 = 3$

$$4x_1 + 3x_2 \ge 6$$

(14 Marks)

- Explain the computational procedure of revised simplex method in standard form. (10 Marks) (06 Marks)
 - Explain the relation between the solution of the primal and the dual.
 - Find the dual of the following problems:
 - $Maximize Z = x_1 + 2x_2 + x_3$ Subject to $2x_1 + x_2 - x_3 \le 2$ $-2x_1 + x_2 - 5x_3 \ge -6$ $4x_1 + x_2 + x_3 \le 6$ $x_1, x_2, x_3 \ge 0$
 - $Maximize Z = 6x_1 + 10x_2$ Subject to $x_1 \le 14$ $x_2 \le 16$ $3x_1+2x_2\leq 18$ $x_1, x_2 \ge 0$

(04 Marks)

(08 Marks)

- Write the procedure for sensitivity analysis. 5
 - Use dual simplex method to solve the following: b.

Maximize $Z = -2x_1 - 3x_2$ Subject to $x_1 + x_2 \ge 2$

(12 Marks)

Write different steps in Hungarian Algorithm to solve an assignment problem. (08 Marks) 6 Obtain optimal solution of transportation problem using the data given below. Use Vogel's approximation method to obtain an initial basic feasible solution. (12 Marks)

Y	D_1	D_2	D_3	D_4	Supply
S_1	19	30	50	10	7
S_2	70	30	40	60	9
S_3	40	8	70	20	18
Demand	5	8	7	14	34

Solve the game whose pay off matrix is given below

Player B 4 0 0

(10 Marks)

Use graphical method to solve the following game:

Player B B_4 B_2 3 -2 2 2 Player A 2 6

(10 Marks)

Explain genetic algorithm and simulate annealing algorithm.

Explain in detail the minimum spanning free with constraints.

(12 Marks) (08 Marks)